Adversarial machine learning has been both a major concern and a hot topic recently, especially with the ubiquitous use of deep neural networks in the current landscape. Adversarial attacks and defenses are usually likened to a cat-and-mouse game in which defenders and attackers evolve over the time. On one hand, the goal is to develop strong and robust deep networks that are resistant to malicious actors. On the other hand, in order to achieve that, we need to devise even stronger adversarial attacks to challenge these defense models. Most of existing attacks employs a single $\ell_p$ distance (commonly, $p\in\{1,2,\infty\}$) to define the concept of closeness and performs steepest gradient ascent w.r.t. this $p$-norm to update all pixels in an adversarial example in the same way. These $\ell_p$ attacks each has its own pros and cons; and there is no single attack that can successfully break through defense models that are robust against multiple $\ell_p$ norms simultaneously. Motivated by these observations, we come up with a natural approach: combining various $\ell_p$ gradient projections on a pixel level to achieve a joint adversarial perturbation. Specifically, we learn how to perturb each pixel to maximize the attack performance, while maintaining the overall visual imperceptibility of adversarial examples. Finally, through various experiments with standardized benchmarks, we show that our method outperforms most current strong attacks across state-of-the-art defense mechanisms, while retaining its ability to remain clean visually.
translated by 谷歌翻译
Online Class Incremental learning (CIL) is a challenging setting in Continual Learning (CL), wherein data of new tasks arrive in incoming streams and online learning models need to handle incoming data streams without revisiting previous ones. Existing works used a single centroid adapted with incoming data streams to characterize a class. This approach possibly exposes limitations when the incoming data stream of a class is naturally multimodal. To address this issue, in this work, we first propose an online mixture model learning approach based on nice properties of the mature optimal transport theory (OT-MM). Specifically, the centroids and covariance matrices of the mixture model are adapted incrementally according to incoming data streams. The advantages are two-fold: (i) we can characterize more accurately complex data streams and (ii) by using centroids for each class produced by OT-MM, we can estimate the similarity of an unseen example to each class more reasonably when doing inference. Moreover, to combat the catastrophic forgetting in the CIL scenario, we further propose Dynamic Preservation. Particularly, after performing the dynamic preservation technique across data streams, the latent representations of the classes in the old and new tasks become more condensed themselves and more separate from each other. Together with a contraction feature extractor, this technique facilitates the model in mitigating the catastrophic forgetting. The experimental results on real-world datasets show that our proposed method can significantly outperform the current state-of-the-art baselines.
translated by 谷歌翻译
可解释的机器学习旨在了解复杂的黑盒系统的推理过程,这些系统因缺乏解释性而臭名昭著。一种不断增长的解释方法是通过反事实解释,这超出了为什么系统做出一定决定,以进一步提供有关用户可以采取哪些方法来改变结果的建议。反事实示例必须能够应对黑框分类器的原始预测,同时还满足实用应用程序的各种约束。这些限制存在于一个和另一个之间的权衡处,对现有作品提出了根本的挑战。为此,我们提出了一个基于随机学习的框架,可以有效地平衡反事实权衡。该框架由具有互补角色的一代和特征选择模块组成:前者的目标是建模有效的反事实的分布,而后者则以允许可区分训练和摊销优化的方式执行其他约束。我们证明了我们方法在产生可行和合理的反事实中的有效性,这些反事实比现有方法更多样化,尤其是比具有相同能力的对应物更有效的方式。
translated by 谷歌翻译
计算机系统的程序或功能中存在的软件漏洞是一个严重且至关重要的问题。通常,在由数百或数千个源代码语句组成的程序或功能中,只有很少的语句引起相应的漏洞。当前,在机器学习工具的协助下,专家在功能或程序级别上进行了脆弱性标签。将这种方法扩展到代码语句级别的成本更高和耗时,并且仍然是一个开放的问题。在本文中,我们提出了一种新颖的端到端深度学习方法,以识别与特定功能相关的脆弱性代码语句。受到现实世界中脆弱代码中观察到的特定结构的启发,我们首先利用相互信息来学习一组潜在变量,代表源代码语句与相应函数的漏洞的相关性。然后,我们提出了新颖的群集空间对比学习,以进一步改善与脆弱性相关的代码语句的强大选择过程。 200K+ C/C ++功能的实际数据集的实验结果表明,我们方法的优越性比其他最先进的基线相比。通常,我们的方法在无需监督的环境中在现实世界数据集上运行时,在Baselines上,VCP,VCA和TOP-10 ACC测量的较高性能在3 \%至14 \%之间。我们已发布的源代码样本可在\ href {https://github.com/vannguyennd/livuitcl} {https://github.com/vannguyennd/livuitcl。} {
translated by 谷歌翻译
由于计算机软件的普遍性,软件漏洞(SVS)已成为普遍,严重和至关重要的问题。已经提出了许多基于机器学习的方法来解决软件漏洞检测(SVD)问题。但是,关于SVD仍然存在两个开放和重大问题,就i)学习自动表示以提高SVD的预测性能,ii)解决常规需要专家的标签漏洞数据集的稀缺性数据集。在本文中,我们提出了一种新颖的端到端方法来解决这两个关键问题。我们首先利用自动表示学习,并具有深层域的适应性,以进行软件漏洞检测。然后,我们提出了一个新型的跨域内核分类器,利用最大额度额定原则,以显着改善从标记项目到未标记的项目的软件漏洞的传输学习过程。现实世界软件数据集的实验结果表明,我们提出的方法优于最先进的基准。简而言之,与使用数据集中的第二高方法相比,我们的方法在SVD中获得了更高的F1量化性能,这是SVD中最重要的度量,从1.83%到6.25%。我们已发布的源代码样本可在https://github.com/vannguyennd/dam2p上公开获取
translated by 谷歌翻译
尽管两阶段矢量量化(VQ)生成模型允许合成高保真性和高分辨率图像,但其量化操作员将图像中的相似贴片编码为相同的索引,从而为相似的相邻区域重复使用现有的解码器体系结构的相似相似区域的重复伪像。为了解决这个问题,我们建议将空间条件的归一化结合起来,以调节量化的向量,以便将空间变体信息插入嵌入式索引图中,从而鼓励解码器生成更真实的图像。此外,我们使用多通道量化来增加离散代码的重组能力,而无需增加模型和代码簿的成本。此外,为了在第二阶段生成离散令牌,我们采用掩盖的生成图像变压器(MaskGit)来学习压缩潜在空间中的基础先验分布,该分布比常规自动回归模型快得多。两个基准数据集的实验表明,我们提出的调制VQGAN能够大大提高重建的图像质量,并提供高保真图像的产生。
translated by 谷歌翻译
可解释的机器学习提供了有关哪些因素推动了黑盒系统的一定预测以及是否信任高风险决策或大规模部署的洞察力。现有方法主要集中于选择解释性输入功能,这些功能遵循本地添加剂或实例方法。加性模型使用启发式采样扰动来依次学习实例特定解释器。因此,该过程效率低下,并且容易受到条件较差的样品的影响。同时,实例技术直接学习本地采样分布,并可以从其他输入中利用全球信息。但是,由于严格依赖预定义的功能,他们只能解释单一级预测并在不同设置上遇到不一致的情况。这项工作利用了这两种方法的优势,并提出了一个全球框架,用于同时学习多个目标类别的本地解释。我们还提出了一种自适应推理策略,以确定特定实例的最佳功能数量。我们的模型解释器极大地超过了忠诚的添加和实例的对应物,而在各种数据集和Black-box模型体系结构上获得了高水平的简洁性。
translated by 谷歌翻译
从非规范目标分布中抽样是概率推断中许多应用的基本问题。 Stein变异梯度下降(SVGD)已被证明是一种强大的方法,它迭代地更新一组粒子以近似关注的分布。此外,在分析其渐近性特性时,SVGD会准确地减少到单目标优化问题,并可以看作是此单目标优化问题的概率版本。然后出现一个自然的问题:“我们可以得出多目标优化的概率版本吗?”。为了回答这个问题,我们提出了随机多重目标采样梯度下降(MT-SGD),从而使我们能够从多个非差异目标分布中采样。具体而言,我们的MT-SGD进行了中间分布的流动,逐渐取向多个目标分布,这使采样颗粒可以移动到目标分布的关节高样区域。有趣的是,渐近分析表明,正如预期的那样,我们的方法准确地减少了多级下降算法以进行多目标优化。最后,我们进行全面的实验,以证明我们进行多任务学习方法的优点。
translated by 谷歌翻译
在本文中,我们介绍了一种新的基于GNN的知识图形嵌入模型,命名为WGE,以捕获聚焦的图形结构和关联的图形结构。特别是,鉴于知识图形,WGE构建一个无向实体的聚焦图,该图形将实体视为节点。此外,WGE还从关联的约束构造另一个无向图形,将实体和关系视为节点。然后,WGE提出了一种新的架构,即直接在这两个单个图表上使用两个vanilla GNNS,以更好地更新实体和关系的矢量表示,然后是加权得分函数来返回三重分数。实验结果表明,WGE在三个新的和具有挑战性的基准数据集Codex上获得最先进的表演,用于知识图形完成。
translated by 谷歌翻译
域适应(DA)从严格的理论作品中获益,研究其富有识别特征和各个方面,例如学习领域 - 不变的表示及其权衡。然而,由于多个源域的参与和训练期间目标域的潜在不可用的域,因此似乎不是这种源DA和域泛化(DG)设置的情况非常复杂和复杂。在本文中,我们为目标一般损失开发了新的上限,吸引我们来定义两种域名不变的表示。我们进一步研究了利弊以及执行学习每个领域不变的表示的权衡。最后,我们进行实验检查这些陈述的权衡,以便在实践中提供有关如何使用它们的实践提示,并探索我们发达理论的其他有趣性质。
translated by 谷歌翻译